15 Sept 2020

The number of scalene triangles having all sides of integral length greater than 1 and perimeter less than 13 is?

 Let, A,B,C are three side of a triangle than 

Condition 1 -  A+B+C <  13

Condition 2 -  A,B,C > 1

Condition 3. Sum of the smaller side must be greater than the largest side => A+B > C

as Perimeter is less than 13 than longer side must be less than 13/2= 6.5

Why?

A+B > C

A+B+C > 2C 

C<(A+B+C)/2 < semi perimeter.

now, replacing A,B,C with (6-P), (6-Q), (6-R)

so, (6-P)+(6-Q)+(6-R) < 13

P+Q+R > 5

so solution is 

1. 2,2,2

2. 2,2,3

3. 3,2,4

4. 3,3,3

5. 3,3,4

6. 3,3,5

7. 4,3,4

8. 4,3,5

9. 4,4,2

10. 4,4,4

11. 5,2,4

12. 5,2,5

there are twelve triangle, 

No comments:

Post a Comment

Please do not enter any spam link